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A new, efficient, and highly accurate numerical method which achieves the
residual reduction with the aid of residual equations and the method of least
squares is proposed for boundary value problems of elliptic partial differential
equations. Neumann, Dirichlet, and mixed boundary value problems of three-
dimensional Poisson’s equation for pressure in a curved duct flow and a
cascade flow have been solved. Numerical results exhibit the effectiveness of
the method by a high convergence rate and a high degree of robustness. The
method is expected to be an effective numerical solution method applicable
to a wide range of partial differential equations with various boundary
conditions. Q 1997 Academic Press
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1. INTRODUCTION

In most numerical approaches, boundary value problems of elliptic partial differ-
ential equations are discretized and reduced to finite difference equations, after
which linear systems with huge matrices are solved using appropriate numerical
procedures. However, the numerical methods currently available, such as SOR,
CG or BCG, ADI, and the multigrid method with SOR etc. seem to be not accurate
enough and the rate of convergence is not necessarily high for three-dimensional
actual engineering applications, especially for Neumann problems of Poisson’s equa-
tion [1–7].
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It is recognized that the three-dimensional Neumann problem still remains a
major difficulty in general curvilinear coordinate systems. The difficulty involved
is due to the characteristics of corresponding matrices and a compatibility condition
(an integral constraint) which relates the source term of the equation and boundary
conditions of the second kind, and these lower both the rate of convergence and
the level of robustness.

The purpose of the work reported here is to propose an efficient and accurate
numerical method called herein the residual cutting method for boundary value
problems of elliptic partial differential equations.

This numerical method is intended to get approximate solutions with a smaller
residual L2 norm. The procedure of the residual cutting method is described as
follows. Using the residual r m corresponding to the approximate solution U m at
mth step, we set a residual equation. We solve the residual equation within the
first few iterations to get a roughly approximated solution c m. We then define the
perturbed quantity fm which is the linear combination of c m and previous fm21,
fm22, .... The coefficients are determined by the method of least squares so as to
reduce the residual L2 norm in the sense that ir m11i , ir m i. Then, a new approxi-
mate solution U m11 and a new residual r m11 are obtained using the resultant per-
turbed quantity fm. The residual equation is updated and the above procedure is
used in an iterative manner. Ultimately we get the target solution and the residual.
The final residual becomes zero for well-posed Neumann, Dirichlet, and mixed
boundary value problems, but for an ill-posed Neumann problem, the final residual
L2 norm will only become a certain minimum that is not zero.

Roughly speaking, in the residual cutting method the ‘‘residual reduction’’ is
achieved at the expense of extra inner product operations, instead of the ‘‘error
reduction’’ in projective type methods like CG and GMRES [8]. In fact, it is shown
that A · fm21, A · fm22, ... and r m are orthogonal to each other. Thus our method
provides with a new aspect of iteration method and, hence, it is interesting to
compare theoretically our method with popular iteration methods as mentioned
above. We also remark that it may be possible to adopt other iteration methods
as an inner iteration. This exhibits another difference of our method from well-
known methods including the multigrid method. The mathematical analysis on the
residual cutting method will be published elsewhere.

To show the validity of the present method, three-dimensional Poisson’s equations
for pressure, in both orthogonal curvilinear and general curvilinear coordinate
systems, are successfully solved for the Neumann problem, as well as for the Dirichlet
and mixed boundary value problems. Numerical results show that the residual
cutting method has many desirable characteristics such as robustness, accuracy and
efficiency in actual applications.

2. PROCEDURE OF RESIDUAL CUTTING METHOD

Throughout this paper we denote by (?,?) and i?i the inner product and L2 norm
in Rn, respectively.

Generally, in order to solve boundary value problems of elliptic partial differential
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equations numerically, which are discretized into finite difference equations, it is
needed to solve the linear system of n equations given in (1):

A · U 5 f. (1)

Now let U m be an approximate solution of (1). The corresponding residual r m

is defined as (2):

r m 5 f 2 A · U m. (2)

Let the solution Uy of (1) be given as the sum of U m and f as in (3):

Uy 5 U m 1 f. (3)

Substitute (3) into (1), and using (2) we obtain the residual equation given in (4):

A · f 5 r m. (4)

In the usual procedure, residual equation (4) is solved up to convergence in an
iterative manner. However, in the residual cutting method, the most important
objective is to get information from (4) which will reduce the residual r m, not to
obtain a solution of (4). That is to say, an approximate solution c m of (4) is obtained
within the first few iterations and is used to construct the next U m11 and r m11.

We are now in a position to describe the procedure of the residual cutting method.
Let m $ 0 and 1 # L # m 1 1. Assume that U m, r m, c m, and f j (21 # j # m 2

1) are given, where f21 5 0. The perturbed quantity fm is defined as (5) and the
approximate solution U m11 is defined as (6):

fm 5 a m
1 c m 1 OL

l52
a m

l fm2l11 (5)

U m11 5 U m 1 fm. (6)

Here the second term of the right-hand side in (5) is taken to be zero for L 5 1.
The corresponding residual r m11 is represented by (7):

r m11 5 r m 2 A · fm 5 f 2 A · U m11. (7)

Each of the real numbers a m
l (l 5 1, 2, 3, ..., L) in (5) is called a residual cutting

coefficient, and determined so as to minimize the value ir m 2 a1 A · c m 2 oL
l52

al A · fm2l11i. In order to determine the residual cutting coefficients a m
l , the method

of least squares is used, that is, the linear system of L equations obtained from (8)
is solved:

­

­al
Ir m 2 a1 A · c m 2 OL

l52
al A · fm2l11I2

5 0, l 5 1, 2, 3, ..., L. (8)

Making full use of the facts that the least squares matrix is symmetric and A · fm21,
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FIG. 1. Flowchart of residual cutting method.

A · fm22, ..., and r m are orthogonal to each other (see the next section), a m
l are

simply determined.
To solve residual equation (4) approximately, the ADI method is adopted because

it is more suitable for parallel vector computers, and solutions are obtained by
directly using the 3-term recurrence relation. We here recommend that zero be set
as the initial value in the ADI iteration.

The procedural flow of the residual cutting method is (see Fig. 1)

(1) Give an initial value U0 and calculate r0 5 f 2 A · U0.

(2) Solve A · f 5 r m to get c m within only a very few iterations.

(3) Calculate residual cutting coefficients a m
l (l 5 1, 2, 3, ..., L).

(4) Calculate fm 5 a m
1 c m 1 oL

l52 a m
l fm2l11.

(5) Calculate U m11 5 U m 1 fm and r m11 5 r m 2 A · fm (5 f 2 A · U m11).

Repeating (2) to (5) until U m converges, we obtain the solution Uy with ry 5 0
for well-posed Neumann, Dirichlet, and mixed boundary value problems. On the
other hand, for an ill-posed Neumann problem, we obtain a certain quantity Uy

with the residual ry ? 0 (see Section 4). It should be noted that ir m11i , ir m i if
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and only if (r m, A · c m) ? 0. In view of this, the residual cutting method is interpreted
as the residual reduction method and it will be clear that the property of the method
is quite different from those of CG etc.

It is also mentioned that the number L for a m
l seems to be enough with 3 #

L # 6 to solve most problems (see Section 6). It is noticed that the residual cutting
method needs L 1 1 inner products per step. (When L 5 1, the number of new
inner products is equal to that of the CG method.) Although this may be a time-
consuming process, it is emphasized that high convergence rates are achieved at
the expense of those operations.

3. ORTHOGONALITY AND CONVERGENCE

In this section U m, r m, c m, and fm denote the vectors in the residual cutting
method.

PROPOSITION 1 (Orthogonality). Let m $ 0 and suppose that (r m, A · c m) ? 0.
Then we have

(r m11, A · f j) 5 0, m 1 1 2 L # j # m, 1 # L # m 1 1; (9)

(A · f j, A · fk) 5 0, m 1 1 2 L # j, k # m, j ? k, 2 # L # m 1 1. (10)

Proof. It follows from the method of least squares that (r m11, A · c m) 5 0 and
(r m11, A · f j) 5 0 for minhm 2 1, m 1 1 2 Lj # j # m 2 1 (1 # L # m 1 1),
where f21 5 0. Since fm is the linear combination of c m and f j, it is obvious that
(r m11, A · fm) 5 0. Hence (9) is proved. To prove (10), let m $ 1 and 2 # L #

m 1 1. By solving the problem of least squares, we have that

(A · fm, A · f j) 5 (r m, A · f j) 5 0, m 1 1 2 L # j # m 2 1.

Here we used relation (9) with m 1 1 replaced by m. This completes the
proof. Q.E.D.

At this point we mention that in the GMRES algorithm fm is determined so as
to achieve orthogonality in the following sense:

(f j, fk) 5 0, 0 # j, k # m, j ? k.

PROPOSITION 2 (Convergence). Let 1 # L # m 1 1 be fixed. Suppose that A is
nonsingular, r m ? 0 for m $ 0, and there is a constant 0 , u , 1, independent of
m, such that

ir m 2 A · c mi # uir mi, m $ 0. (11)

Then U m converges to the target solution Uy as m R y.



252 TAMURA, KIKUCHI, AND TAKAHASHI

Proof. As is easily checked, the method of least squares assures that

ir m11i # ir m 2 A · c mi.

Combining this with (11), we obtain that

ir m11i # uir mi,

which means that r m R 0 as m R y. Since r m 5 f 2 A · U m and A is nonsingular,
it is proved that U m converges to the target solution Uy as m R y. Q.E.D.

We notice that condition (11) is satisfied for boundary value problems of the
three-dimensional Poisson’s equation in a cubic domain. In fact, if we use the
standard finite difference equation (the 7-point difference scheme), then the corre-
sponding coefficient matrix A becomes the sum of three matrices which are mutually
commutative. By the commutativity, it will be an elementary exercise to check
condition (11) [9]. The remark mentioned here suggests that the convergence of
U m may be also affirmative in general case.

4. COMPATIBILITY CONDITION IN THE NEUMANN PROBLEM

It is well known that in the Neumann problem of Poisson’s equation, the existence
of a solution requires the satisfaction of a compatibility condition (an integral
constraint) [5, 6] which relates the source of the equation and boundary conditions
of the second kind. The compatibility condition is a consequence of the divergence
theorem (Green’s theorem).

Now we assume that A is symmetric, positive semidefinite, and rank (A) 5 n 2

1. We further assume that 1 5 (1, 1, ..., 1)t is the eigenvector corresponding to the
minimal eigenvalue l 5 0 of A. We then have

(A · U, 1) 5 0 for all U, (12)

which is regarded as a matrix version of the divergence theorem. In the form of
Eq. (1), the compatibility condition is expressed as (13):

( f, 1) 5 0. (13)

It is evident that condition (13) is a necessary and sufficient condition for Eq. (1)
to possess a solution [10]. For convenience, if ( f, 1) 5 0, Eq. (1) is said to be well-
posed and if ( f, 1) ? 0, Eq. (1) is said to be ill-posed (not well-posed).

In usual numerical methods, it is necessary to fulfill condition (13), for instance,
by modifying the source. On the other hand, in the residual cutting method, condi-
tion (13) is not necessarily required, because the method is also applicable to ill-
posed problems. In fact, ir m i certainly decreases and it is seen that U m and r m

converge to certain Uy and ry, respectively. In the case of ill-posed problem, it
turns out that ry ? 0. Furthermore, if the computation is executed by modifying
the right-hand side as shown in (14),
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A · U 5 f 2 ry, (14)

then the same solution Uy as the original ill-posed problem is obtained. This also
justifies the numerical procedure proposed in [6]. Thus the residual cutting method
is advantageous enough for practical use, and the Neumann problem can be actually
dealt with in the same manner as the Dirichlet problem.

5. APPLICATION TO POISSON’S EQUATION

In order to examine the validity of the residual cutting method, several numerical
computations are carried out for Neumann, Dirichlet, and mixed boundary value
problems of three-dimensional Poisson’s equation for pressure.

Poisson’s equation for pressure p can be written in the coordinate system (j1 ,
j2 , j3) as in (15):

O3
i, j51

­

­ji
SJgi j ­p

­j j
D5 S. (15)

Here J is the Jacobian of the Cartesian coordinate system (x1 , x2 , x3) with respect
to (j1 , j2 , j3) and gi j is defined as in (16) and (17), respectively:

J 5
­(x1 , x2 , x3)
­(j1 , j2 , j3)

(16)

gi j 5 O3
k51

­ji

­xk

­j j

­xk
, i, j 5 1, 2, 3. (17)

The problems to be solved are shown in Table I. In case a the pressure distribution
in a curved duct is computed as a fundamental test and in case b the pressure
distribution in a turbomachinery cascade is computed to verify the applicability

TABLE I
Test Problems of Three-Dimensional Pressure Field

Neumann problem
Dirichlet Mixed boundary

Well-posed Ill-posed problem value problem

Curved duct flow a 2 1 a 2 2 a 2 3
orthogonal curvilinear
coordinate system

51 3 37 3 51

Cascade flow b 2 1 b 2 2 b 2 3 b 2 4
general curvilinear
coordinate system

91 3 47 3 41
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FIG. 2. Computational grid for a cascade.

and robustness of our method. In the mixed boundary value problem b-4, boundary
conditions of the first kind are set on two surfaces and boundary conditions of the
second kind are set on the other four surfaces. The coordinate systems used for
case a and case b are the orthogonal curvilinear and general curvilinear coordinate
systems, respectively.

Both of computational grids are nonstaggered and the computational grid for a
cascade is shown in Fig. 2. Equation (15) is discretized using the standard central
differencing. Namely, the 7-point and 19-point difference equations are respectively
obtained for the orthogonal curvilinear and general curvilinear coordinate systems.

We apply the residual cutting method with U replaced by p. It is noted that the
right-hand side f in Eq. (1) is composed of the discretization of the source S in Eq.
(15) and boundary conditions.

In all problems in Table I we set p0 5 0 at interior grid points as a very rough
initial value. In this case it is seen that r 0 5 f. To solve residual equations, the ADI
method of Wachspress–Habetler type [11] is used. In each sweep of the ADI
procedure, difference terms corresponding to cross-derivatives are simply handled
as terms of the right-hand side, because our main interest lies in robustness.

For convenience, relative residual « m and residual cutting ratio d m at mth step
are defined as

« m 5
ir m i
i f i

(18)
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d m 5
ir m i 2 ir m11i

ir m i
. (19)

The residual cutting ratio d m
in in inner ADI is also defined as in (20) (see Fig. 6):

d m
in 5

ir m i 2 ir m 2 A · c m i
ir m i

. (20)

The severe convergence criterion as given in (21) is applied:

em 5
ipm11 2 pm i

ipm i
, 10212. (21)

In order to compare CPU times in Fig. 4 and Fig. 5, results of the ADI method
without the residual cutting step are used for a normalization of CPU time.

6. NUMERICAL RESULTS

6.1. Effects of the Number L of a m
l on Convergence Characteristics

To explain the typical convergence characteristics in the residual cutting method,
the three-dimensional well-posed Neumann problem a-1 in Table I was solved.
Figure 3 shows the behavior of relative residual « m with the number L of a m

l as a
parameter, taking up the number m of residual cutting steps as the abscissa. Through

FIG. 3. Effects of the number L of residual cutting coefficients a m
l on the convergence characteristics

(well-posed Neumann problem a-1, N 5 2).
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FIG. 4. Optimal number L of residual cutting coefficient a m
l (well-posed Neumann problem a-1,

N 5 2).

this trial, the number N of inner ADI cycles are fixed as N 5 2. The ADI method
itself is slow in convergence, while the residual cutting method drastically converges
when L $ 3. However, it seems that the effects of L become saturated near L 5

3 or 4 in taking into account the CPU time.
Making clear the effects of the number L of a m

l , the number M of residual cutting
steps and CPU time T up to convergence are plotted in Fig. 4, taking up L as the
abscissa. It is seen that L 5 3 or 4 is sufficient as far as the CPU time is concerned.
Almost no difference is noted even if a larger L is taken, and it is rather meaningless
to employ too large L because the load of inner product operations becomes greater.

6.2. Influence of the Number N of Inner ADI Cycles on
Convergence Characteristics

The number N of inner ADI cycles is next discussed in the well-posed Neumann
problem a-1. The number N is varied from 1 to 10, fixing the number of a m

l at
L 5 3. The number M of residual cutting steps and normalized CPU time T up to
convergence are plotted in Fig. 5, taking up N as the abscissa. From these results,
it is clear that the CPU time does not vary so much according to N, but as a matter
of course, M decreases with an increase in N. The optimum number of N concerning
CPU time efficiency depends upon the load of inner ADI and the outer residual
cutting procedure. So it is possibly affected by the performance of computer and
the tuning level of program. However, within the entire test case treated in this
paper, N 5 2 is recommendable as the number of ADI cycles.
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FIG. 5. Optimal number N of inner ADI cycles (well-posed Neumann problem a-1, L 5 3).

6.3. Fluctuation of Residual Cutting Ratio d m

The fluctuation of residual cutting ratios d m given in (19) and d m
in given in (20)

is shown in Fig. 6 for N 5 2 and L 5 2, 3, 4. The solid line and the dotted line
signify d m and d m

in , respectively. In general, the residual cutting ratio d m becomes
larger with the larger L and a higher convergence rate is attained. For example,
when L 5 4 is used as shown in Fig. 6c, the residual cutting ratio d m

in in inner ADI
is almost doubled by the outer residual cutting procedure. This means that the
outer residual cutting procedure is very effective in reducing residual. Additionally
speaking, the residual cutting ratio d m takes as a value 0 , d m # 1, and if d m is
closer to unity, a higher convergence rate is realized. Due to the load of calculation
of residual cutting coefficients, it seems likely that the best result can be expected
with N 5 2 and L 5 3, considering the CPU time. Results obtained from the test
on the two-dimensional Neumann problem also bring about good efficiency for
N 5 2 and L 5 3, being the same as in the three-dimensional case.

Glancing at Fig. 6, it can be seen that the residual cutting ratio d m oscillates.
However, it can be imagined that there exists an averaged cutting ratio, which
suggests that the large residual rapidly decreases. The residual cutting ratio hereby
shown is one of the useful indexes for the convergence rate of a solving method
used, when several numerical methods are compared.

6.4. Convergence Characteristics of an Ill-posed Neumann Problem

In the next stage, the ill-posed Neumann problem a-2 will be solved using the
residual cutting method. The results shown in Fig. 7 are the convergence characteris-
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tics of the problem a-2 with N 5 2 and L 5 3. The relative residual converges to
its minimum value of 1026 ; that is, it does not converge to zero. The result verifies
numerically that the source of the problem and boundary conditions of the second
kind were set so as to not satisfy the compatibility condition (13). The final nonzero
residual represents the degree of ill-posedness of the problem. On the other hand,
the relative error of pressure p converges up to the convergence criterion of 10212.
Comparing the well-posed problem a-1 and ill-posed problem a-2, it is seen that
the latter converges faster. Incidentally, according to Eq. (14), if the final nonzero
residual in the problem a-2 is subtracted from the right-hand side in a-2, and it is
solved again, one can obtain the same solution with a zero final residual. In general
engineering applications, it is not necessarily easy to set Neumann problems as
well-posed problems. In any case, it will be understood that the residual cutting
method has favorable characteristics suitable for actual engineering applications.

6.5. Boundary Condition Dependency

The convergence characteristics of the Neumann problem a-1 and Dirichlet prob-
lem a-3 for the pressure distribution in a curved duct are shown in Fig. 8. The
residual cutting method is also valid for the Dirichlet problem for which it attains
a convergence rate three times higher than that of the Neumann problem. Generally,
Dirichlet problems are easier to solve than Neumann problems, and the convergence
rate of mixed boundary value problems shows the intermediate characteristics
between the former and the latter, according to the number of boundary conditions
of the second kind.

6.6. Initial Value Dependency

In order to examine robustness, the initial value p0 at interior grid points in all
the test problems is set to be zero as the most rough initial value. However, the
residual cutting method is stable even if such a rough initial value is provided.
Usually in Navier–Stokes computation, the convergence of Poisson’s equation is
drastically enhanced because of the fact that its initial value is improved according
to the progress of computation.

6.7. Computational Grid Dependency

To show the general validity of the residual cutting method, let us examine the
convergence in the Neumann problems b-1, b-2, Dirichlet problem b-3, and mixed
boundary value problem b-4 of Poisson’s equation described in the general curvilin-
ear coordinate system. In each case, N 5 2 is used as the number of inner ADI
cycles and L 5 5 is used as the number of residual cutting coefficients, the reason
for which will be referred to later.

Figure 9 shows the convergence characteristics of relative residual and relative

FIG. 6. Fluctuation of residual cutting ratio.
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FIG. 7. Convergence characteristics of the ill-posed Neumann problem a-2 (N 5 2, L 5 3):
curved duct.

FIG. 8. Convergence characteristics of the well-posed Neumann problem a-1 and the Dirichlet
problem a-3 (N 5 2, L 5 3): curved duct.
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FIG. 9. Convergence characteristics of the well-posed Neumann problem b-1 and the ill-posed
Neumann problem b-2 (N 5 2, L 5 5): cascade.

error in the well-posed Neumann problem b-1 and ill-posed Neumann problem b-
2. The relative residual « m

well and relative error e m
well , in case of the well-posed

problem b-1, reach to the target points. On the other hand, in the case of the ill-
posed problem b-2, the relative residual « m

ill does not converge to zero, while the
relative error, e m

ill rapidly converges. It is the same as in the case of the orthogonal
curvilinear coordinate system.

Comparing « m of the well-posed problem a-1 in the orthogonal curvilinear coordi-
nate system (see Fig. 8) and « m

well of the well-posed problem b-1 in the general
curvilinear coordinate system, it is seen that the number of steps for the latter is
approximately twice that of the former. However, in ill-posed problems, it is seen
that the difference between the orthogonal curvilinear coordinate system and the
general curvilinear coordinate system is very small from the viewpoint of general
engineering applications.

The convergence characteristics of relative residual «m and relative error em in
the Dirichlet problem b-3 are shown in Fig. 10. The same rapid convergence is
noted with both of them, and the convergence is almost never inferior to the
problem a-3 in the orthogonal curvilinear coordinate system (see Fig. 8). Comparing
the Neumann problem with the Dirichlet problem, a considerable degree of differ-
ence is seen in the convergence characteristics. In fact, it will be understood that
the convergence in the Dirichlet problem is generally several times more rapid than
that in the Neumann problem. It is the same in the case of the orthogonal curvilinear
coordinate system.

The convergence characteristics in the mixed boundary value problem b-4 with
two surfaces having boundary conditions of the first kind and the other four surfaces
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FIG. 10. Convergence characteristics of the Dirichlet problem b-3 and the mixed boundary value
problem b-4 (N 5 2, L 5 5): cascade.

having boundary conditions of the second kind is also shown in Fig. 10. How the
convergence is made indicates the intermediate characteristics between the Dirichlet
problem and the well-posed Neumann problem. In terms of condition number, this
is expressed as

iADi iA21
D i , iAMi iA21

M i , iANi iA21
N i,

where AD denotes the coefficient matrix corresponding to the Dirichlet problem
and so on, and AN is regarded as an operator on Rn21.

As mentioned above, L 5 5 was adopted as the number of residual cutting
coefficients for the problems b-1, b-2, b-3, and b-4 in the general curvilinear coordi-
nate system. It has been found from identical tests with those in the orthogonal
curvilinear coordinate system that L 5 5 or 6 is enough both for the number of
residual cutting steps and more importantly for CPU time. Such requirement for
L seems to be owing to the treatment of difference terms corresponding to cross-
derivatives as mentioned in Section 5.

6.8. Number of Grid Points Dependency

In order to show how the residual cutting method behaves as the number of grid
points is increased, the Dirichlet and well-posed Neumann problems for a cascade
are examined varying the number of the grid points. The fine and coarse grids
made from original one retaining the physical domain.

It seems that the number M of steps up to convergence (e # 10212) becomes
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FIG. 11. Multigrid-like property of residual cutting method: cascade.

independent of the number of the grid points both for Dirichlet and Neumann
problems (see Fig. 11). The multigrid-like property of the Dirichlet problem is
established at a relatively small number of grid points, compared with that of
Neumann problems. The multigrid-like property confirms the rapid decrease of the
large residual as mentioned in Subsection 6.3. Thus the residual cutting method
has a multigrid-like property and this is quite advantageous for actual engi-
neering applications.

7. CONCLUSIONS

The residual cutting method is proposed as a numerical method for boundary
value problems of elliptic partial differential equations. The residual equation is
set and its approximate solution is obtained within the first few iterations. The
desired perturbed quantity is detained by the linear combination of the approximate
solution and previous perturbed quantities. The coefficients, called residual cutting
coefficients, are determined by the method of least squares so as to reduce the
residual L2 norm. The residual equation is updated and the above procedure is
repeated up to convergence.

The residual cutting method is quite simple, but provides with a high convergence
rate and a high level of robustness for various types of boundary value problems
including Neumann problems. It is recognized that Neumann problems remain a
difficulty, especially in general curvilinear coordinate system. However, in our solv-
ing method, Neumann problems in curvilinear coordinate systems are successfully
dealt with in the same manner as Dirichlet problems. The mechanism of residual
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reduction is nothing but the fact that the inner solver implicitly decreases the
residual and the outer residual cutting step explicitly decreases the residual. The
ADI method is used as an inner solver of the residual equation and no special
acceleration is done. Accordingly, if adequate acceleration parameters are employed
numerical results may be improved to a higher convergence rate.

By numerical computations of three-dimensional Poisson’s equation for pressure,
the following results were obtained:

(1) The residual cutting method can, despite its simple algorithm, solve elliptic
partial differential equations steadily, with high accuracy and at a high rate of conver-
gence.

(2) The residual cutting method does not necessarily require the so-called com-
patibility condition which is a major difficulty in solving Neumann problem. In fact,
it is shown that the target solution of an ill-posed Neumann problem is same as
that of the corresponding well-posed Neumann problem which is reasonably preset.

(3) The residual cutting method compensates for the ADI method, because the
ADI method itself is not necessarily available for three-dimensional problems in
general curvilinear coordinate systems.

(4) The number N of inner ADI cycles is enough with N 5 2. Also, the number
L of residual cutting coefficients is enough with L 5 3 in the orthogonal curvilinear
grid system and with L 5 5 in the general curvilinear grid system. From a general
point of view, N 5 2 and 3 # L # 6 are recommended and it is not required that
N and L are taken any larger.

(5) In terms of CPU time, the Dirichlet problem most rapidly converges, fol-
lowed by the mixed boundary value problem, with the Neumann problem being
the slowest to reach convergence.

(6) There exists no dependence on initial values, and steady computation is
carried out from a roughly approximated initial value.

(7) The residual cutting method has a multigrid-like property and this is quite
advantageous for actual engineering applications.
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